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ABSTRACT

We discuss circular distributions obtained by wrapping the classical
exponential and Laplace distributions on the real line around the cir-
cle. We present explicit forms for their densities and distribution
functions, as well as their trigonometric moments and related param-
eters, and discuss main properties of these laws. Both distributions
are very promising as models for asymmetric directional data.
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1. INTRODUCTION

Let X be a real random variable (r.v.) with probability density
function (p.d.f.) f and characteristic function (ch.f.) ¢. Then the corre-
sponding wrapped r.v.

X, = X(mod 27) (1.1)

has the density

fw(0) = i f(0+2kn), 0¢€]0,2n), (1.2)

k=—00
and the characteristic function (the discrete Fourier transform)
qﬁp:Eei’)X“' =¢(p), p=0,£1,£2,..., (1.3)

see, e.g., Fisher (1993), Jammalamadaka and SenGupta (2001) and
Mardia and Jupp (2000).

The cases of wrapped Cauchy, normal, and stable distributions
have been studied extensively (see, e.g., Gatto and Jammalamadaka,
2003; Levy, 1939). In this work, we present basic theory of wrapped
exponential and double-exponential (Laplace) distributions, which were
introduced recently in Jammalamadaka and Kozubowski (2001, 2003).

The exponential distribution, with its important memoryless
property, provides a standard model in diverse fields such as reliability,
queueing theory, and others (see, e.g., Barlow and Proschen, 1996). The
classical Laplace distribution and its skew generalizations are compe-
titors to normal and other symmetric distributions in stochastic model-
ing, particularly in financial applications (see, e.g., Kotz et al., 2001 and
references therein). We believe that their circular analogs can find inter-
esting applications in directional data, when they resemble the characteri-
stic shape of the Laplace distribution (with its possible skewness and
sharp peak at the mode). Such data frequently result from orientation
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experiments in biology (see, e.g., Batschelet, 1981; Bruderer, 1975; Jander,
1957; Matthews, 1961; Schmidt-Koenig, 1964). As an example of a typi-
cally skew distribution, Batschelet (1981) shows a histogram of directions
chosen by migrating birds (see Fig. 2.6.1. in Batschelet, 1981). Commen-
ting on the “asymmetry in the choice of directions’’, he remarked that it
“may be caused by a mixture of two or three distributions’’. The wrapped
Laplace distribution can in fact be represented as such a mixture.

Mardia (1972) presents several examples of skew empirical distribu-
tions, and states that “symmetrical distributions on the circle are
comparatively rare’” (see Mardia, 1972, p. 10). One of his examples is
studied in detail by Pewsey (2002), as an illustration of his test of symme-
try for circular data. Pewsey (2002) considered grouped data on the
frequencies of thunder during various times of the day recorded at
Kew (England) during the summers of 1910-1935 (see Table 1.3 in
Mardia, 1972). Mardia (1972) classified these data as unimodal, “slightly
asymmetrical’” and “positively skew’” (see Mardia, 1972, p. 10). When
testing these data, Pewsey (2002) obtained the p-value of zero, rejecting
the symmetry. Incidentally, when assessing the performance of his test
of symmetry, Pewsey (2002) used wrapped (symmetric) Laplace distri-
bution (as one of four symmetric distributions) and wrapped exponen-
tial distribution (as one of four skew alternatives) in his simulation
study.

Below we sketch a theory of wrapped exponential and Laplace distri-
butions. First, we define them in Sec. 2, where we also present their basic
properties. Then, we summarize their important properties in Sec. 3.
More detailed information with estimation, applications, and proofs
can be found in Jammalamadaka and Kozubowski (2001, 2003).

2. DEFINITIONS AND BASIC PROPERTIES
When we apply (1.2) and (1.3) to the exponential distribution with

p.df f(x)=2e ™, x>0, we obtain a wrapped exponential distri-
bution, denoted by WE(A) with 4 > 0. The following Table 1 provides

Table 1. The wrapped exponential distribution WE(/.).

chf. $p=1tr,  p=0,£1,42,...
p.d.f. ful0) =25, 0€10,2n)
c.d.f. Fw(e) = 11,%:2);:);.7 0e [01 27‘[)
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the characteristic function (ch.f.), density function (p.d.f.), and cumula-
tive distribution function (c.d.f.) of the wrapped exponential distribution
WE(A), 2 € R.

The p.d.f. should be extended in a periodic fashion for the values of 6
outside of the interval [0, 2n). The case A = 0 is defined by a continuous
extension and corresponds to the circular uniform distribution (when
A — 0T then the c.d.f. in Table 1 converges to %). The case 4 < 0 results
from wrapping the “negative’” exponential distribution with parameter
|4] > 0, whose p.d.f.is f(x) = ||el**, x < 0. Moreover, we have the relation

® ~ WE(Z) if and only if 2n — ® ~ WE(—1). (2.1

Remark 2.1. We note a very interesting and curious property: The
restriction of the linear exponential r.v. X to the interval [0,2x%) (that is
X|X < 2r) has the same distribution as the wrapped r.v. X,, given by (1.1).

Consider now an asymmetric Laplace r.v. X with the density function

. e M for x > 0,

f(x) =21/ +K)~ ) (2.2)

e W for x <0,
and the ch.f.
1
1) =
(1) 1+ 222 —it(1/x — k) /2
1 1

ST w ) 11y R (2.3)

where 4,1 >0; see Kotz et al. (2001) for theory and applications of these
distributions and their various generalizations. (When k = 1 we obtain
the classical (symmetric) Laplace density.) When we apply (1.2) and
(1.3) to the above distribution, we obtain a wrapped Laplace distribu-
tion, denoted by WL(Z,x). This is defined in Table 2 below, which
provides the ch.f., the p.d.f., and the c.d.f. of the wrapped Laplace
distribution WL(4,k), A € R,k > 0.

The p.d.f. should be extended in a periodic fashion for the values of 0
outside of the interval [0, 27). Observe that the p.d.f. in Table 2 is positive
and integrates to 1 on [0, 27) for any value of A, including 4 < 0, and we
have

WL(—2, %) = WL(J, 1/x). (2.4)
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Table 2. The wrapped Laplace distribution WL(Z, k).
_ 1 1 _
ch.f. (bp—T/OK)W, p—O,:I:l,:i:Z,
p.df. Ful0) = £ (17— + (/—[1) 0 € [0,27)
c.d.f. Fu(0) = Hloist + 155 5L, 0 0,2m)

It is also easy to see that

® ~ WL(4,x) if and only if 27— © ~ WL (/l,l>.
K

In case of a symmetric Laplace distribution with x = 1, the wrapped
Laplace density simplifies to

2 e2n=0)k | 0

ful®) =3 - 25)

e2ni _

and we have 27 — ©@ £ © in this case, where 4 denotes distributional
equivalence.

Remark 2.2. The Laplace distribution is a mixture of a positive and a
negative exponential distributions, since f in (2.2) can be written as

F0) = ) + (L= pfaly), xER. 26)
f] (x) = /1167)'1)6 (x > O)7 fz(x) = ;QE)'M ()C < 0)7 (27)
and
1 ,
p= 21 A= AK, Ao = /I/K (28)

Consequently, the wrapped Laplace distribution is a mixture of
two wrapped exponential distributions, as the p.d.f. in Table 2 can be
written as

A0 20

e e
fw(0) = P (1 —P)m’ 0 € [0,2n),
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with the parameters as in (2.8). The corresponding wrapped Laplace
WL(Z,x) r.v. ® admits the representation

0L10, + (1 -1)0,, (2.10)

where ®; and ®; are independent wrapped exponential WE(Ax) and
WE(—A/x) r.v.’s, and [ is an indicator random variable (independent of
®; and ®,) taking on the values 1 and 0 with probabilities 1/(1 + x?)
and x?/(1 + x?), respectively.

Remark 2.3. By the factorization of the asymmetric Laplace ch.f., the
corresponding r.v. has the same distribution as the difference of two inde-
pendent exponential random variables (see, e.g., Kotz et al., 2001). Since
the wrapped Laplace ch.f. given in Table 2 admits a similar factorization,
we obtain an analogous representation for the wrapped Laplace r.v.
® ~ WL(4, k) viz.

0L, + 0, (mod2n), (2.11)

where ®; and ®; are independent wrapped exponential WE(Ax) and
WE(—A/k) r.v.’s, mentioned before.

Remark 2.4. The WL(4, k) distribution converges weakly to the circular
uniform distribution as A — 0, or k — 0", or k — oo.

Remark 2.5. A three-parameter class of distributions can be defined by
introducing a location parameter 5 € [0,27) and shifting the wrapped
Laplace p.d.f. (defined on R by a periodic extension) by # with the result-
ing densities of the form

g(0) = f..(0 —n)

with f,, given in Table 2. Parameter # clearly corresponds to the mode for
such a family.

2.1. Characterization of the Densities

Note that the p.d.f. of the wrapped exponential distribution WE(2) is
strictly decreasing on the interval [0, 2n) if 4 > 0, and strictly increasing
on [0,2n) if 1 < 0.
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In case of the wrapped Laplace distributions, the densities are
unimodal with a sharp peak at the mode. Basic properties of the densities
are described in the following result taken from Jammalamadaka and
Kozubowski (2003).

Proposition 2.1.  Let f(-; 2, k) be the density of the WL(A, k) distribution
with 2 > 0. Then

(i) f(:;4,K) is strictly decreasing on (0,0") and strictly increasing
on (0*,2r), where

. i . -1 , eZn/l/K -1

Moreover

0" >n fork<l1l, 0"=mn forx=1, and 0 <z forx>1.

(2.13)
(il) The maximum and the minimum values of f(-; 1, k) are
. AK 1 1
f(()a /la K) - (}anlnf(ga ;Lv K) - 1 + K2 (ezn,t/;( —1 + 1 — e—27r/11c>
(2.14)
and
2] =5 o el
*, :%6”"'—1 1 @A TN 14s2
F0%4,0) = e < 21 /k 21k ’ (2.15)
respectively.
(ili) For any given A > 0 and k > 0, we have
f0;4,1/k) = f2n — 0; 4,x), 0€[0,2n). (2.16)

2.2. Trigonometric Moments and Related Parameters

Computation of the trigonometric moments and related parameters
of the wrapped exponential distribution is straightforward. For the
convenience of the reader we summarize some common parameters in
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Table 3. Note that since the ¢,’s are the Fourier coefficients, we have the
following Fourier representation of the wrapped exponential density:

= Z Gpe

Ap .
5 cos 0+7s1n 0]. 2.17
Zz PO+ s (217)

Similarly the trigonometric moments of the wrapped Laplace distribution
are also easy to derive, utilizing the mixture representation (2.10) and
formulas for the trigonometric moments of the wrapped exponential
distribution given in Table 3. Here, the density of the WL(1, «)
distribution admits the Fourier representation

2 J—
1+2ZK} [kKA(p* + 2%) cos p0 + pi* (1 —k )smpO]

0; A, k)
iy <) (2212 + p?) (k2p? + 2%)

(2.18)

Other common parameters of the wrapped Laplace laws can be
obtained with ease, perhaps with the exception of the circular median.
They are summarized in Table 4. Note that the mean direction lies in
the interval [0, 7/2) for k¥ < 1 and in the interval [37/2,27) for k > 1 (this
restriction is caused by the fact that the mode is equal to 0).

A median direction &, of a circular distribution with density f is any
solution (in the interval [0,27)) of

Sotm Eo+2m
/ £(0)d0 = / £(0)d0 = % (2.19)

o Sotm

where the density f satisfies

f(&o) > f(&o +m), (2.20)

see, e.g., Mardia and Jupp (2000). Clearly, the median direction of the
wrapped symmetric Laplace distribution WL(4, 1) is equal to zero (and
coincides with the mean direction and the mode). In the following result,
proved in Jammalamadaka and Kozubowski (2003), we describe the
median direction for the general case.
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Proposition 2.2. Let ©® ~ WL(A,k). Then, ® admits a unique median
direction given by

{é*, forl>0, 0<k <1,
$o =

2.21
E+m, fori>0, k>1, ( )

where & € [0, 7] is the unique solution of the equation

1 e—iké ) e},f/rc 1
- =—. 2.22
1+ 52 (1 + e—Axm +x 1+ eln/lc) 2 ( )

Clearly, the median is less than © for k < 1 and greater than ©t fori > 1.

3. SOME IMPORTANT PROPERTIES
In this section we show that wrapped exponential and Laplace distri-

butions share some of the well-known properties of their analogues on
the real line.

3.1. Infinite Divisibility

An angular r.v. ® (and its probability distribution) is infinitely divi-

sible if for any integer n > 1 there exist i.i.d. angular r.v.’s ©y,...,0,
such that
O+ +0,(mod2n) £ 0. (3.1)

Since a circular variable obtained by wrapping an infinitely divisible
random variable is infinitely divisible (see Mardia and Jupp, 2000), the
infinite divisibility of the wrapped exponential and Laplace distribu-
tions follow from that of the linear exponential and Laplace distributions.

Proposition 3.1. If ©® ~ WE(X) with . € R, then O is infinitely divisible.
Moreover, for any positive integer n > 1 the equality in distribution (3.1)
holds where the ©;’s have the uniform circular distribution for 1 =0
and the wrapped gamma distribution with the ch.f.

1 1/n
tr= (i) (2)
for A # 0.
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Proposition 3.2. If © ~ WL(4,k), where A,k >0, then © is infinitely
divisible. Moreover, for any positive integer n > 1 the equality in distri-
bution (3.1) holds with uniform circular variable ® if either 2 =0 or
k=0, and otherwise with

0,20 + 0" (mod2n), (3.3)

where ®' and ®" are independent wrapped gamma r.v.’s with ch.f.’s

(ﬁ)/ e (ﬁ/um)/ (34)

respectively.

3.2. Geometric Infinite Divisibility

Motivated by the stability property of the exponential distribu-
tion with respect to geometric compounding, Jammalamadaka and
Kozubowski (2001) introduced a notion of geometric infinite divisibility
for angular distributions.

Definition 3.1. An angular r.v. ® is said to be geometric infinitely
divisible if for any ¢ € (0,1) there exist i.i.d. angular r.v.’s @;,0,,...
such that

O +---+0,,(mod21) £ O, (3.5)
where v, has the geometric distribution
Puy=k)=(1-¢q)"'q, k=123, .., (3.6)

The following properties of wrapped exponential and Laplace distribu-
tions, established in Jammalamadaka and Kozubowski (2001, 2003),
follow from analogous results of classical exponential and Laplace laws.

Proposition 3.3. If ® ~ WE(A), where X € R, then © is geometric infi-
nitely divisible. Moreover, for any q € (0,1) the equality in distribution
(3.5) holds, where the ®;’s have the uniform circular distribution for
/.= 0 and the WE(1/q) distribution for A # 0.

Proposition 3.4. If © ~ WL(.,k), where J,x>0, then O s
geometric infinitely divisible. Moreover, for any q € (0,1) the equality

Copyright © Marcel Dekker, Inc. All rights reserved.
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in distribution (3.5) holds, where the ®;’s have the uniform circular dis-
tribution for 2 =0 or k =0, and the WL(4, x,) distribution for A,k > 0.
Here, L, = A/+/q and i is the unique solution of the equation

L= va(1-x) (37)

q

3.3. Maximum Entropy Property

Recall that the entropy of a r.v. ® with p.d.f. f is defined as
2n

H(©) =~ [ £(0)In f(0)do, (38)
0

and provides a measure of uncertainty. Jaynes (1957) proposed general
inference procedures of finding a distribution that maximizes the entropy,
and this method has been applied in a variety of fields including statistical
mechanics, stock-market analysis, queuing theory, and reliability (see,
e.g., Kapur, 1993). It is well-known that if the mean direction and circular
variance are fixed, then the entropy is maximized by the von Mises
distribution, and under no restrictions on f the entropy is maximal for
the circular uniform distribution (see, e.g., Kapur, 1993). As shown in
Jammalamadaka and Kozubowski (2001), the wrapped exponential
distribution WE(A) maximizes the entropy under the condition

2n

0F(0)d0 =m, 0<m < 2n. (3.9)
0

Proposition 3.5. Consider the class C of all circular r.v.’s with density f
satisfying the condition (3.9). Then, the maximum entropy is attained by
the WE(J) distribution, where ). = (2n&)™" and & satisfies the equation

m 1

T dET

= (3.10)

Moreover, the maximal entropy is

1 — 6’72“’1 1 27‘667271}'

Remark 3.1. By the monotonicity properties of the function g(¢) =
&— (¢ —1)7, it follows that the distribution maximizing the entropy
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under the restriction (3.9) is wrapped exponential (4 > 0) for 0 < m < =,
wrapped negative exponential (4 < 0) for n < m < 2xn, and circular
uniform (1 = 0) for m = =.

Remark 3.2. This above result is analogous to the well-known property
of the exponential distribution (which maximizes the entropy among all
continuous probability distributions on (0,00) with a given mean, see,
e.g., Kapur, 1993).

SUMMARY

In this paper, we discuss circular distributions resulting from
wrapping the exponential and Laplace distributions on the real line
around the circle. The densities and distribution functions of wrapped
exponential distributions admit explicit forms, as do trigonometric
moments and related parameters. Wrapped exponential distributions
retain the important properties of infinite divisibility and maxim entropy
of the corresponding exponential distributions. The mixture of two
wrapped exponential distributions leads to a wrapped Laplace distribu-
tion, so that the properties of the former distribution are useful in study-
ing the latter one. Both distributions allow for skewness, and are
promising for modeling asymmetric directional data.
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